1⁄8 DIN Multisignal

 Ω OMEGA
Panel Meter
 Economical Panel Meter for Process, Temperature and Electrical Measurement

OMEGA's new multisignal panel meter delivers high-performance in a $1 / 8$ DIN size for panel mounts and integration in a wide range of applications. The DP20 accepts universal inputs, including thermocouple, RTD, process (mA \& Vdc), resistance, frequency and true RMS voltage and current. By configuration, it will work as an AC and DC voltmeter (up to 600 V) and AC and DC ammeter (up to 5 A) offering application flexibility for process control and industrial requirements. A single universal power supply allows this unit to be suited for global use.

The optional relays, analog output, and Modbus ${ }^{\circledR}$ RTU serial communications provide customization, control and communication capability. Additional features of the economical DP20 panel meter include scaling, NEMA 4 (IP65) protection, and programmable decimal points.

[^0]
APPLICATIONS

\checkmark Assembly Line
\checkmark Control Panel
\checkmark Laboratory
\checkmark Reading Offset-Configure a Fixed Number of Counts to be Added to the Reading
\checkmark Second Scaling Function-Define Two Scalings for the Same Signal and Control (One is Active with the 'External Control’ Option)
\checkmark Recursive Display Filter for Noisy Signals and Configurable Steps for Minimum Predefined Changes on the Reading
\checkmark Output and Control Options: 1 or 2 Relay Outputs, 1 Analog 4 to 20 mA Isolated Output, 1 Modbus RTU Isolated Serial Output
$\checkmark 5$ Levels of Brightness Intensity
\checkmark Password Protection

Specifications

Digits: 4
Reading: 9999/-1999
Decimal Point: Configurable
LED Color: Red
Digit Height: 14 mm (0.55")
Accepted Signal Ranges: See tables at page 4 for more information

AC Voltages and AC Currents: $600 \mathrm{Vac}, 200 \mathrm{Vac}$, $20 \mathrm{Vac}, 2 \mathrm{Vac}, 200 \mathrm{mVac}, 60 \mathrm{mVac}, 5 \mathrm{Aac}, 20 \mathrm{mAac}$ (True RMS measure) (accepts phase-neutral and phase-phase measure)
DC Voltages and DC Currents: $\pm 600 \mathrm{Vdc}, \pm 200 \mathrm{Vdc}$, $\pm 20 \mathrm{Vdc}, \pm 2 \mathrm{Vdc}, \pm 200 \mathrm{mVdc}, \pm 60 \mathrm{mVdc}, \pm 5 \mathrm{Adc}$, $\pm 20 \mathrm{mAdc}$
Thermocouples: K, J, E, N, L, R, S, B, T and C
(automatic cold junction compensation)

Probes:

Resistive 'Pt' Probes: Pt100 with 2 and 3 wires, Pt500, Pt1000
Resistive 'Ni' Probes: Ni100, Ni200, Ni1000
Resistive NTC Probes: See table at page 4
Resistive PTC Probes: Families KTY-121, KTY-210 and KTY-220
Process: 4/20mA, 0/10Vdc
(+15 Vdc excitation voltage configurable at terminal 5)
Resistances: Ranges $0 / 5 \mathrm{~K}$ and $0 / 50 \mathrm{~K}$
Potentiometers: With nominal values from 500 R up to 20 K
Frequency up to 100 Hz (minimum 15 Hz), Vac and Aac ranges
Thermal Drift Offset+Span: $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Readings: 3 readings/ second

Refresh: 3 readings/ second
Response Time: <300 mSec. (0\% to 99\% of signal)
Power 'U': 18 to $265 \mathrm{Vac} / \mathrm{dc}$ (isolated 1500Veff @ 60 seconds)
Output and Control Options:
1 or 2 Relays
1 analog output $4 / 20 \mathrm{~mA}$ isolated
1 Modbus RTU isolated serial output
Protection: NEMA 4 (IP65)
Consumption (Normal Mode): <1.0 W (meter only) <2.5W (meter with options)
Consumption ('Eco' Mode): <0.3 W (meter only) <1.5 W (meter with options)
Connections: Plug-in screw terminals
Weight: < 150 g (5.3 oz)
Operation Temperature: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$

Internal Structure - Jumpers for Input Range Selection

Connections and Rear View

Options

Relay outputs

Analog output

Module M1
Function 1 analog output isolated $4 / 20 \mathrm{~mA}$ isolated 1000 Vdc

Modbus RTU output

Module

S1

Function 1 Modbus RTU output 9,600 bps, 4,800 bps isolated 1000 Vdc

Input Signal Ranges - Technical Specifications

Vac ranges (Veff.)	Scale by default	Scalable	Jumpers	Jumpers	Accuracy (\% FS)	Max. Oversignal	$\mathrm{Z}_{\text {in }}$
$\sim 600 \mathrm{Vac}$	600	$\begin{gathered} \text { from } 9999 \\ \text { to }-1999 \end{gathered}$	G I	4-5	$\begin{aligned} & <0.30 \% \\ & \text { (up to } 150 \mathrm{~Hz} \text {) } \end{aligned}$	800 Vac	12 M
$\sim 200 \mathrm{Vac}$	200.0		I			800 Vac	12 M
$\sim 20 \mathrm{Vac}$	20.00		A I			150 Vac	1 M
$\sim 2 \mathrm{Vac}$	2.000		BI			100 Vac	100 K
$\sim 200 \mathrm{mVac}$	200.0		CI			30 Vac	10 K
$\sim 60 \mathrm{mVac}$	60.0		EI			3 Vac	1 M

Vdc Ranges	Scale by default	Scalable	Jumpers	Jumpers ' T '	Accuracy (\% FS)	Max. Oversignal	$\mathrm{Z}_{\text {in }}$
$\pm 600 \mathrm{Vdc}$	600	$\begin{gathered} \text { from } 9999 \\ \text { to }-1999 \end{gathered}$	G	4-5	<0.20\%	800 Vdc	12 M
$\pm 200 \mathrm{Vdc}$	200.0		---			800 Vdc	12 M
$\pm 20 \mathrm{Vdc}$	20.00		A			150 Vdc	1 M
$\pm 2 \mathrm{Vdc}$	2.000		B			100 Vdc	100 K
$\pm 200 \mathrm{mVdc}$	200.0		C			30 Vdc	10 K
$\pm 60 \mathrm{mVdc}$	60.0		E		<0.25\%	3 Vdc	1 M

Aac ranges (Aeff.)	Scale by default	Scalable	Jumpers	Jumpers 'T'	Accuracy (\% FS)	Max. Oversignal	$\mathrm{Z}_{\text {in }}$
~ 5 Aac	5.00	$\begin{gathered} \text { from } 9999 \\ \text { to -1999 } \end{gathered}$	1	4-5	$\begin{aligned} & \quad<0.50 \% \\ & \text { (up to } 150 \mathrm{~Hz} \text {) } \end{aligned}$	$\begin{gathered} 7 \text { Aac max. } \\ 7 \mathrm{sec} .) \end{gathered}$	$20 \mathrm{~m} \Omega$
$\sim 20 \mathrm{mAac}$	20.00		D I			25 mAac	4.7 R

Adc ranges	Scale by default	Scalable	Jumpers	Jumpers	Accuracy (\% FS)	Max. Oversignal	$\mathrm{Z}_{\text {in }}$
± 5 Adc	± 5.00	$\begin{gathered} \text { from } 9999 \\ \text { to }-1999 \end{gathered}$		4-5	<0.25\%	$\begin{gathered} 7 \mathrm{Adc} \\ (\max .7 \mathrm{sec} .) \end{gathered}$	$20 \mathrm{~m} \Omega$
$\pm 20 \mathrm{mAdc}$	± 20.00		D	4-5	<0.15\%	25 mAdc	4.7 R

Process Signals	Scale by Default	Scalable	Jumpers	Jumpers ' T '	Accuracy (\% FS)	Max. Oversignal	$\mathrm{Z}_{\text {in }}$
4/20 mA	0/100.0	$\begin{aligned} & \text { from } 9999 \\ & \text { to }-1999 \end{aligned}$	D	1-2*	<0.15\%	25 mA	4.7 R
0/10 Vdc	0/100.0		A		<0.20\%	25 Vdc	1 M

*Place jumper 'T' at position 1-2 for +15 Vdc excitation voltage at terminal 5.
Optionally, place jumper ' T ' at position 4-5 to work with 'external contact' at terminal 5.

NTC probes ' R_{25} ' (configurable)*	Jumpers	Jumpers 'T'	Range of measure	Accuracy (\% of reading)	Beta (configurable)
10K	F, K	4-5	$-60^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$<1.5 \% \text { of }$ reading	3500

PTC probes Family	Jumpers ' \mathbf{S}^{\prime}	Jumpers ' \mathbf{T}	Range in ${ }^{\circ} \mathbf{C}\left({ }^{\circ} \mathrm{F}\right)$	Total Error
KTY-121	F	$4-5$	$-55 / 150$ $(-67 / 302)$	$<1^{\circ}$
KTY-210	$\mathrm{F}, \mathrm{H}, \mathrm{K}$			
KTY-220	$\mathrm{F}, \mathrm{H}, \mathrm{K}$			

Input Signal Ranges - Technical Specifications

Thermocouples	Jumpers	Jumpers	Range ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Total Error (Cold Junction Included)
K	E	4-5	-100 to 1350 (-148 to 2462)	$<3^{\circ}$
J			-100 to 1200 (-148 to 2192)	
E			-100 to 1000 (-148 to 1832)	
N			-100 to 1300 (-148 to 2372)	
L			-100 to 900 (-148 to 1652)	
R	E, J		0 to 1768 (32 to 3214)	
S			0 to 1768 (32 to 3214)	
T			-100 to 400 (-148 to 752)	
C	E		0 to 2300 (32 to 4172)	$<5^{\circ}$
B	E, J		700 to 1820 (1292 to 3308)	

Pt and Ni Probes	Jumpers	Jumpers	Range ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Total Error	Current at Sensor
Pt100 (3 wires)	F, H, J	5-6	-200 to 700 (-328 to 1292)	$<1^{\circ}$	$<900 \mathrm{uA}$
$\begin{gathered} \text { Pt100 } \\ (2 \text { wires }) \\ \hline \end{gathered}$	F, H	4-5	-200 to 700 (-328 to 1292)		$<900 \mathrm{uA}$
Pt500	F		-150 to 630 (-238 to 1166)		<90 uA
Pt1000	F		-190 to 630 (-310 to 1166)		$<90 \mathrm{uA}$
Ni100	F, H		-60 to 180 (-76 to 356)		<900 uA
Ni200	F, H		-60 to 120 (-76 to 248)		<900 uA
Ni1000	F		-60 to 180 (-76 to 356)		< 90 uA

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Resistance } \\ \text { ranges }\end{array} & \begin{array}{c}\text { Scale } \\ \text { by default }\end{array} & \text { Scalable } & \text { Jumpers } & \text { Jumpers } & \begin{array}{c}\text { ' } \mathbf{~} \text { ' }\end{array} \\ \hline 0 \text { to } 5 \mathrm{~K} & 9.999 & \text { from } 9999 \\ \text { (\% of reading) }\end{array}\right]$

| Potentiometers
 nominal value | Scale
 by default | Scalable | Jumpers | ' \mathbf{S}^{\prime} |
| :---: | :---: | :---: | :---: | :---: | :---: |

Frequency signals	Scale by default	Scalable	Jumpers ' \mathbf{S}^{\prime}	Jumpers ' \mathbf{T} '	Accuracy (\% reading)
15 Hz to 100 Hz	$0 / 100.0$	from 9999 to -1999	Vac or Aac ranges	$4-5$	$<0.15 \%$ of reading

Maximum oversignal is the maximum signal accepted by the instrument. Higher signal values may cause instrument damage. Lower values are not destructive but may be out of accuracy specifications.

To Order	
Model No.	Description
DP20	$1 / 8$ DIN multisignal panel meter with universal 18/265 Vac/dc power supply
DP20-A1	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 1 relay output
DP20-A1-A2	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 2 relay outputs
DP20-M1	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 1 isolated 4 to 20 mA analog output
DP20-M1-A2	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 1 isolated 4 to 20 mA analog output and 1 relay output
DP20-S1	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 1 isolated Modbus RTU output
DP20-S1-A2	$1 / 8$ DIN multisignal digital panel meter with universal $18 / 265 \mathrm{Vac} / \mathrm{dc}$ power supply with 1 isolated Modbus RTU output and 1 relay output

[^0]: \checkmark Fast Access Menu—Front Key Access to Modify the Alarm Setpoints and Max/Min Memory
 \checkmark External Control Function-Contact at Multifunctional Terminal 5 (Second Scaling, Decimal Point Change, 'Hold' the Reading Tare or Activate the Max/Min Memory)
 \checkmark Automatic, Power Saving Eco Mode
 \checkmark Alarms 1 or 2, Independent, Configurable as Max/Min, with Setpoint and Hysteresis

